Assorted Publications

Last updated: June, 2024

Note, there are two types of publications here, fully peer-reviewed journal publications and conference papers. Most conference publications have been usually peer-reviewed, too, prior to the acceptance for the conference record. The list is not complete, some minor contributions were left out. 

 

As a matter of fact, my dissemination channels are targeting two specific audiences from very different industrial sectors:

a) the research community interested in optimization and control within process industries and

b) the research community working on nuclear detection systems for homeland security. 

If you would like to get in touch with me regarding the presented topics, please write an email to marcus.neuer(at)mndevelopments.de.

 

Please visit also my researchgate profile, where you can find my full publication list including presentations, preprints. 

I am registered at ORCID ORCID iD iconhttps://orcid.org/0000-0002-4514-0619 and on Publons, where my researcher ID is ABE-2286-2020. Both services list only a subset of publications from my researchgate profile.

2024

75. Maschinelles Lernen für die Ingenieurwissenschaften - Einführung in physikalisch-informierte, erklärbare Lernverfahren für KI in technischen Anwendungen (Book)

M. J. Neuer, SpringerNature, 2024, German version (English version will follow, presumably in 2025)

 

74. Physics-informed autoencoders with intrinsic differential equations for anomaly detection in industrial processes (Chapter)

M. J. Neuer, A. Wolff and N. Hallmanns, Chapter in Lecture Notes in Networks and Systems - Information Systems and Technologies, SpringerNature, 2024

 

2023

73. A system for elemental analysis of aluminum chips based on neutron activation analysis 

T. Szczesniak, M. Grodzicka-Kobylka, K. Brylev, L. Janiak, L. Adamowski, A. Dziedzic, M. Sitek, A. Syntfeld, H. Zastawny, A. Gajderowicz, F. Peregrin, T. Baldi, M. da Silva-Lopez,  M. J. Neuer and B. Kleimt, IEEE Nuclear Science Symposium and Medical Imaging Conference, Vancouver, 2023

 

72. Data augmentation and feature engineering for machine learning in neutron activation analysis 

K. Brylev, T. Szczesniak, M. Grodzicka-Kobylka, L. Janiak, L. Adamowski and M. J. Neuer, IEEE Nuclear Science Symposium and Medical Imaging Conference, Vancouver, 2023

 

71. Marker line identification in special nuclear material using physics-informed autoenconding 

M. J. Neuer and C. Henke, IEEE Nuclear Science Symposium and Medical Imaging Conference, Vancouver, 2023

 

70. Secure blockchain encryption for homeland security spectroscopic radiation measurements 

M. J. Neuer and C. Henke, IEEE Nuclear Science Symposium and Medical Imaging Conference, Vancouver, 2023

 

69. Causal and counterfactual AI techniques for autonomous optimisation in steel industry: Explainable, Cognitive and Informed 

 M. J. Neuer and A. Wolff, Proc. European Steel Technology and Application Days (ESTAD), Düsseldorf, 2023

 

68. Uniform manifold approximation and projection as anomaly detection applied to masking scenarios of Plutonium

 M. J. Neuer and E. Jacobs, Proc. ESARDA/INMM Joint Meeting, Vienna, 2023

 

67. Gamma enrichment analysis algorithm based on physics-informed neural networks

 M. J. Neuer and C. Henke, Proc. ESARDA/INMM Joint Meeting, Vienna, 2023

 

2022

66. Optimizing integrated steelworks process off-gas distribution through economic hybrid model predictive control and echo state networks

S. Dettori, I. Matino, V. Colla, M. J. Neuer, V. Baric, D. Schroeder, V. Utkin and F. Schaub., Proc. IFAC Workshop on Control of Complex Systems (COSY), Bologna, November 2022, published in IFAC-PapersOnLine, Elsevier, 2023

 

65. From controlling single processes to the complex automation of process chains by artificially intelligent control systems 

M. J. Neuer et al., Proc. IFAC Workshop on Control of Complex Systems (COSY), Bologna, November 2022, published in IFAC-PapersOnLine, Elsevier, 2023

 

64. Bayesian shapeless learning for improving the efficiency of mobile radiation detection systems

 M. J. Neuer, E. Jacobs, C.Henke, IEEE Nuclear Science Symposium and Medical Imaging Conference, Milano, 2022

 

63. KI in der Stahlindustrie: Selbst-organisiert, lernend und grün

M. J. Neuer, Future Steel, Düsseldorf, 2021

 

62. Rigorous semantic analysis of steels most influential automation projects of the last decades

M. J. Neuer, F. Marchiori, J. Ordieres-Meré, V. Colla, M. Loos, EUROSTEELMASTER, 2022

2021

61. From Machine Learning Towards Autonomous, Explainable Artificial Intelligence in Industrial Automation for Steel Processing

M. J. Neuer, M. Loos, European Steel Technology and Application Days, Stockholm, 2021

 

60. The ControlInSteel Project: Systematic Analysis of Advanced Automation and Control Solutions in EU Funded Research Projects of the Last Decades

M. J. Neuer, F. Marchiori, J. Ordieres-Meré, V. Colla, S. Dettori, European Steel Technology and Application Days, Stockholm, 2021

 

57b. Challenges and frontiers in implementing artificial intelligence in process industry

M. J. Neuer, A. Wolff, N. Holzknecht, Springer Nature - Advances in Intelligent Systems and Computing: Impact and Opportunities of Artificial Intelligence Techniques in Steel Industry, Feb. 2021, journal publication of talk from 2020

DOI:10.1007/978-3-030-69367-1_1

 

56b. Quantifying uncertainty in physics-informed variational autoencoders

M. J. Neuer, Springer Nature -Advances in Intelligent Systems and Computing: Impact and Opportunities of Artificial Intelligence Techniques in Steel Industry, Feb. 2021, journal publication of talk from 2020 

DOI: 10.1007/978-3-030-69367-1_3 

2020

59. Explainable and physics-informed machine learning for optimising process chains and product quality

M. J. Neuer, D. Sonnenschein, H. Krambeer, M. Wunde, N. Holzknecht, M. Feldges, Future Steel Forum 2020, 8.12.2020

 

58. Sensitivity analysis for scale detection using different machine learning techniques

M. J. Neuer, C. Müller, M. Wunde, D. Sonnenschein, H. Krambeer, INFIRE Workshop, 29.10.2020

 

57a. Challenges and frontiers in implementing artificial intelligence in process industry

M. J. Neuer, European Steel and Technology Platform (ESTEP) AI/ML Workshop, Keynote Lecture, 22.10.2020, to be published as Journal Paper at Springer Nature, Advances in Intelligent Systems and Computing in 2021

 

 

56a. Quantifying uncertainty in probability dynamics of production processes, using physics-informed artificial intelligence

M. J. Neuer, European Steel and Technology Platform (ESTEP) AI/ML Workshop, 15.10.2020, to be published as Journal Paper at Springer Nature, Advances in Intelligent Systems and Computing in 2021

 

55. Cognitive perception and self-organisation for digital twins in cyber-physical steel production systems

M. J. Neuer, Industry 4.0 and Steelmaking Webinar of Steel Times International / Future Steel Forum, 18.06.2020

2019

54. How physics-infused artificial intelligence drives innovation in modern spectroscopic detection instruments

M. J. Neuer, C. Henke, P. Henke, IEEE Nuclear Science Symposium and Medical Imaging Conference 2019, Manchester, UK

 

53. Restricted Boltzmann Spectrum Deconvolution

M. J. Neuer, IEEE Nuclear Science Symposium and Medical Imaging Conference 2019, Manchester, UK

 

52. Maching learning algorithms for improving the dose rate measurement in handheld homeland security instrumentation

M. J. Neuer, N. Teofilov, C. Henke, W. Schykowski, IEEE Nuclear Science Symposium and Medical Imaging Conference 2019, Manchester, UK

 

51. Multiple source localisation by sensor fusion of digital magnetic compass data and spectroscopic data

E. Jacobs, C. Henke, W. Schykowski, and M. J. Neuer, IEEE Nuclear Science Symposium and Medical Imaging Conference 2019, Manchester, UK

 

50. Automation security in the era of Industry 4.0

M. J. Neuer, M. Kretschmer, N. Holzknecht and A. Wolff, article in Steel Times International, November 2019, based on Future Steel Forum 2019 conference contribution in Budapest

 

49. Introducing digital twins for feeding unsupervised and supervised machine learning techniques

M. J. Neuer, A. Ebel, N. Holzknecht, DISSI2M Final Workshop, 27.06.2019, Düsseldorf, Germany

 

48. Ecological and economic optimisation of auxiliary aggregates in steel production 

Moritz Loos, Marcus J. Neuer, Jan Polzer, Monika Feldges, Andreas Wolff, Andre Weber, 4th European Steel Technology and Application Days (ESTAD), METEC, 27.06.2019, Düsseldorf, Germany

 

47. Anomaly and causality detection in process data streams using machine learning with specialized eigenspace topologies

Marcus J. Neuer, Thomas George, Andreas Quick and Norbert Link, 4th European Steel Technology and Application Days (ESTAD), METEC, 26.06.2019, Düsseldorf, Germany

 

46. Cyberattacks for breakdown or intentional quality reduction - how secure is the European steel industry in the era of digitalization?

Andreas Wolff, Norbert Holzknecht and Marcus J. Neuer, 4th European Steel Technology and Application Days (ESTAD), METEC, 25.06.2019, Düsseldorf, Germany

 

45. Quo Vadis, automation? From intelligent products and machines to machine learning control

Marcus J. Neuer, Moritz Loos, Jan Polzer, Roger Lathe, Andreas Wolff, Julian Kremeyer, 4th European Steel Technology and Application Days (ESTAD), METEC, 25.06.2019, Düsseldorf, Germany

 

44. Introduction to digital twins in steel industry

Marcus J. Neuer, Moritz Loos, Norbert Holzknecht and Alexander Ebel, DISSI2M Webinar, 17.06.2019, www.dissi2m.eu

 

43. Utilization of digital twins in steel industry - an overview

Marcus J. Neuer, Norbert Holzknecht and Alexander Ebel, DISSI2M Workshop, 22.05.2019, Scuola Superiore Sant‘Anna, Pisa, Italy

 

42. Die digitale Gegenwart und digitale Zukunft der Stahlproduktion aus Sicht der angewandten Forschung

M. J. Neuer, H. Peters, Handelsblatt Webinar "Vernetzt und Digital in eine neue Äre - Agilität als Erfolgsfaktor für das moderne Stahlunternehmen", Februar 2019,

Link to the webinar, including the video of the presentation,

2018

41. Introduction to digital twins

M. J. Neuer, A. Ebel, A. Wolff, M. Loos and N. Holzknecht, ESTEP Workshop on Digital Twin technology in steel industry: from concept to operational benefits, Charlesroi, Belgium, November 2018

 

40. A multi-agent approach for the self-optimization of steel production

V. Iannino, M. Vannocci, M. Vannucci, V. Colla and M. J. Neuer, International Journal of Simulation: Science & Technology 19 (5), October 2018, DOI: 10.5013/IJSSST.a.19.05.20

 

39. Data mining and modelling

A. De Melo Souza, D. Arnu, F. Temme, E. Klapic, R. Klinkenberg, M. J. Neuer, X. Renard, P. Gallinari, C. Mozzati, C. Mocci, G. Fricout, Steel Times International 42(7), October 2018

 

38. How Material 4.0 could impact the stent (Was der Werkstoff 4.0 für den Stent leisten könnte)

M. J. Neuer, Medizin & Technik, VDI, Februar 2018 (in German)

Full text online

 

37. Agent-based approach for the energy demand-side management

F. Marchiori, M. Benini,  S. Cateni, V. Colla, A. Ebel, M. J. Neuer, L. Piedimonti and A. Vignali, Stahl und Eisen 138(2), Februar 2018

 

2017

36. Deontic agents enforcing logical conditions in nuclide identification algorithms

M. J. Neuer, Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference 2017, Atlanta, US

DOI: 10.1109/NSSMIC.2017.8532772

 

35. Rapid Kalman-Filter stabilization technique for single and multi-detector systems

M. J. Neuer, E. Jacobs, C. Henke, Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference 2017, Atlanta, US

DOI: 10.1109/NSSMIC.2017.8532725

 

34. Virtual materials in correspondence with virtual machines: On the path to decentrally self-optimized process guidance (Virtuelle Werkstoffe in Korrespondenz mit Virtuellen Maschinen: Der Weg zur optimalen Prozessführung)

M. J. Neuer, M. Loos, D. Sonnenschein, J. Polzer, Werkstoffwoche2017, Dresden, translated title, publication language was German

 

33. How intelligent is the Material 4.0? (Wie intelligent ist der Werkstoff 4.0?)

M. J. Neuer, Werkstoffwoche2017, Dresden, translated title, publication language was German

 

32. Digitization in steel industry

M. J. Neuer, A. Ebel, J. Brandenburger, J. Polzer, M. Loos, N. Holzknecht, H. Peters, Stahl und Eisen 137(7), July 2017, translated title, publication language was German
 

31. The BFI Industry 4.0 solution modules for fully exploiting the digitization efforts of the European Steel Industry

M. J. Neuer, N. Holzknecht, A. Ebel, J. Brandenburger, Proc. ESTAD2017, Vienna
 

30. Economic impact maximization and throughput increase by self-optimization applied to a pickling line

M. J. Neuer, M. Loos, D. Sonnenschein, J. Polzer, Proc. ESTAD2017, Vienna
 

29. How to optimize steel quality by applying Industry 4.0 techniques in real-world examples

M. J. Neuer, A. Ebel, F. Marchiori, N. Holzknecht, J. Brandenburger, Proc. ESTAD 2017, Vienna
 

28. A reference architecture for quality improvement in steel industry

D. Arnu, E. Yaqub, C. Mocci, V. Colla, M. J. Neuer, G. Fricout, X. Renard, P. Gallinari, C. Mozzati, 1st International Data Science Conference IDSC 2017, Salzburg, Austria, Proceedings published in Book: Data Science - analytics and applications

DOI: 10.1007/978-3-658-19287-7_12

 

2016

27. Integrated dynamic energy management for steel production

F. Marchiori, A. Belloni, M. Benini, S. Cateni, V. Colla, A. Ebel, M. Lupinelli, G. Nastasi, M. J. Neuer, C. Pietrosanti and A. Vignali, Energy Procedia, Nov. 2016
 

26. Underwater nuclide identification strategy using a multi-agent system with a dedicated scattering and attenuation agent

M. J. Neuer, E. Jacobs and C. Henke, IEEE Nuclear Science Symposium and Medical Imaging Conference 2016, Strasbourg, France

DOI: 10.1109/NSSMIC.2016.8069634

 

27. Sensor fusion of spectroscopic data and gyroscope accelerations for a direction indication in handheld radiation detection instruments

C. Henke, M. J. Neuer, E. Jacobs, N. Teofilov, P. Henke and M. J. Neuer, IEEE Nuclear Science Symposium and Medical Imaging Conference 2016, Strasbourg, France

DOI: 10.1109/NSSMIC.2016.8069632

 

26. Dynamic derivative convolution algorithm for prompt gamma neutron activation spectra

M. J. Neuer, T. Szczeniak, H. Zastawny, E. Jacobs and M. Grodzicka, IEEE Nuclear Science Symposium and Medical Imaging Conference 2016, Strasbourg, France

DOI: 10.1109/NSSMIC.2016.8069639

 

25. Self-optimization of a pickling line by fusing decentral Industry 4.0 components with online process models

Marcus J. Neuer, Moritz Loos, Detlef Sonnenschein and Jan Polzer, Surface Inspection Summit (SIS2016), 28th-29th Sept. 2016

 

24. Dynamic rescheduling and reallocation of steel products using agents with strategical anticipation and virtual marketstructures

Marcus J. Neuer (BFI), Francesca Marchiori (CSM), Alexander Ebel (BFI), Nikolaos Matskanis (CETIC), Luca Piedemonti (CSM), Andreas Wolff (BFI) and GaelMathis (ArcelorMittal), IFAC-PapersOnLine Vol. 49 (20), 2016, pages 232-237

 

23. Agenten am virtuellen Marktplatz zur dynamischen Umplanung von Stahlprodukten (Agents in a virtual marketplace, dynamically reallocating steel products)

Marcus J. Neuer, Alexander Ebel, Andreas Wolff, Industrie 4.0 workshop of Stahlakademie, 04.02.2016, Düsseldorf, Germany

 

22. Development of a new automation and information paradigm for integrated intelligent manufacturing in steel industry based on holonic agents

Marcus J. Neuer, Gael Mathis, Alexander Ebel, Nikolaous Matskanis, Martin Rößiger, Sonja Zillner, Artur Papiez, Stephane Mouton, Francesca Marchiori, Luca Piedimonti, Andreas Wolff, Costanzo Pietrosanti, Norbert Goldenberg, Reiner Pevestorf, Research Fund for Coal and Steel: Workshop on EU funded projects, 03.02.2016, Brussels, Belgium

2015

21. Smart re-allocation of steel products

Marcus J. Neuer (BFI), Alexander Ebel (BFI), Andreas Wolff (BFI), Francesca Marchiori (CSM), Nikolaos Matskanis (CETIC), Martin Rößiger (SIEMENS) and Gael Mathis (ArcelorMittal), Stahl & Eisen 11 / 2015
 

20. Model-based, Analytical Maximum-Likelihood Deconvolution for CZT Detectors

Marcus J. Neuer, Elmar Jacobs, IEEE Nuclear Science Symposium and Medical Imaging Conference 2015, San Diego 

DOI: 10.1109/NSSMIC.2015.7581933
 

19. Cognitive R-Tree for Stabilizing Temperature and Load Induced Gain Shifts of Scintillation Detectors

Part III of a paper series on cognitive filtering

Elmar Jacobs, Christian Henke, Frank Lück, Norbert Link and Marcus J. Neuer, IEEE Nuclear Science Symposium and Medical Imaging Conference 2015, San Diego 

DOI: 10.1109/NSSMIC.2015.7581927
 

18. Forecasting the direction of incoming radiation based on fusion of gyroscopic and spectroscopic data

Marcus J. Neuer, Christian Henke and Elmar Jacobs, ArchivX, Preprint of a conference publication at the IEEE NSS-MIC 2016

Download preprint PDF from archivx

 

17. Raising economic efficiency of steel products by a smart re-allocation respecting different process routes

Marcus J. Neuer, Alexander Ebel, Andreas Wolff, Francesca Marchiori, Martin Rößiger, Nikos Matskanis and Gael Mathis, European Steel Technology and Application Days (ESTAD), Düsseldorf, 2015 , Publication from the EU-RFCS project I2MSTEEL, a collaboration of Centro Sviluppo Materiali (CSM, Italy), Siemens (Germany), Cetic (Belgium), VDEh-Betriebsforschungsinstitut (BFI, Germany) and ArcelorMittal (France)

2014

16. Evolutionary ensembles that learn spectroscopic characteristics of scintillation and CZT detectors

Marcus J. Neuer, Nikolai Teofilov, Yong Kong and Elmar Jacobs, IEEE Nuclear Science Symposium and Medical Imaging Conference 2014, Seattle

DOI: 10.1109/NSSMIC.2014.7431187

 

15. A Cognitive Filter to Stabilize Peak Positions and Widths of a Scintillation Detector and to Determine Its Material

Part II of a paper series on cognitive filtering

Elmar Jacobs, Christian Henke and Marcus J. Neuer, IEEE Nuclear Science Symposium and Medical Imaging Conference 2014, Seattle

DOI: 10.1109/NSSMIC.2014.7431186

 

14. A cognitive filter to automatically determine scintillation detector materials and to control their spectroscopic resolution during temperature changes

Part I of a paper series on cognitive filtering
Marcus J. Neuer and Elmar Jacobs, IEEE Transactions on Nuclear Science, Volume 61, Issue 3, June 2014

2013

13. Spectral identification of a 90Sr source in the presence of masking nuclides using Maximum-Likelihood deconvolution

Marcus J. Neuer, Nuclear Instruments and Methods in Physics Research A, Volume 728, p. 73-80, 2013
DOI: 10.1016/j.nima.2013.06.013

Industrial publications for ICx Technologies (later FLIR Radiation) from 2007-2012

12. Methods and databases for identifying nuclides

Marcus J. Neuer, Yong Kong, Ralf Lentering, Jürgen Stein, Patent, Pub. No.: WO/2012/072103, Int. App. No.:PCT/EP2010/068448

 

11. Comparison of different Cs2LiYCl6:Ce crystals: Energy resolution and pulse shape dependences on temperature

Cristina Plettner, Falko Scherwinski, Guntram Pausch, Ralf Lentering, Yong Kong, Achim Kreuels, Marcus Neuer and Jürgen Stein in Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Anaheim, 2012

 DOI: 10.1109/NSSMIC.2012.6551454

 

10. Towards design and optimization of scintillation-detector systems: A Monte-Carlo simulation framework

Yong Kong, Guntram Pausch, Katja Roemer, Marcus Neuer, Cristina Plettner, Ralf Lentering and Jürgen Stein, Nuclear Science Symposium Conference Record (NSS/MIC), Knoxville, 2010 

DOI: 10.1109/NSSMIC.2010.5873953


9. Linearization of Gamma Energy Spectra in Scintillator-Based Commercial Instruments

Yong Kong, Guntram Pausch, Katja Roemer, Achim Kreuels, Claus Herbach, Marcus Neuer, Ralf Lentering and Jürgen Stein, IEEE Transactions on Nuclear Science, Volume 57, Issue 3, 2010

DOI: 10.1109/TNS.2009.2033684

 

8. Surveillance of nuclear threats using multiple, autonomous detection units

Marcus J. Neuer, Kai Ruhnau, Arne Ruhnau, Ralf Lentering, Guntram Pausch, Frank Platte and Jürgen Stein, Nuclear Science Symposium Conference Record (NSS/MIC), Dresden, 2008

DOI: 10.1109/NSSMIC.2008.4775056

7. A technique for estimating detection limits of radio-nuclide identifying detectors by means of computer simulations

Claus-M. Herbach, Yong Kong, Ralf Lentering, Marcus Neuer, Guntram Pausch, Cristina Plettner, Kai Ruhnau and Jürgen Stein, Nuclear Science Symposium Conference Record (NSS/MIC), Dresden, 2008

DOI: 10.1109/NSSMIC.2008.4775218

 

6. Radiation detector signal processing using sampling kernels without bandlimiting constraints

Jürgen Stein, Marcus Neuer, Claus Herbach, Guntram Pausch and Kai Ruhnau, Nuclear Science Symposium Conference Record (NSS/MIC), Honolulu, 2007

Academia publications from 2004 - 2008

5. Pitch angle scattering and effective collision frequency caused by stochastic magnetic fields

Marcus Neuer and Karl-H. Spatschek, AIP Physics of Plasmas 15, 022304, 2008

DOI: 10.1063/1.2844436

4. Diffusion of test particles in stochastic magnetic fields in the percolative regime

Marcus Neuer and Karl-H. Spatschek, Physical Review E 74, 036401, 2006

DOI: 10.1103/PhysRevE.74.036401

 

3. Diffusion of test particles in stochastic magnetic fields for small Kubo numbers

Marcus Neuer and Karl-H. Spatschek, Physical Review E 73, 026404, 2006

DOI: 10.1103/PhysRevE.73.026404

2. Finite Larmor Radius contributions to anomalous transport in plasmas with stochastic magnetic fields

Marcus Neuer, Dissertation, Heinrich-Heine-Universität Düsseldorf, 2004

Abstract: Anomalous transport of charged particles in a collisional stochastic plasma is investigated on the basis of the A-Langevin equation. The latter is a stochastic differential equation describing the motion of a particle that experiences collisions and a stochastic magnetic field. Contrary to previously used guiding center models, here finite Larmor radius effects are taken into account. Two different approximation methods are applied to obtain the Lagrangian velocity correlation function from the solution of the A-Langevin equation, distinguished in terms of a dimensionless parameter called the Kubo number, which measures the degree of magnetic turbulence. The first one, the Corrsin approximation, is a widely used straightforward technique to relate the Lagrangian correlation, which is determined in the co-moving frame of reference, with the common, spatially dependend Eulerian correlation. Differential equations for the mean square diplacement and the diffusion coefficient are obtained from the Green-Kubo formalism. The quasilinear limit is discussed and estimates for the Larmor radius effects are presented. The well-known Rechester-Rosenbluth regime is derived and the influence of the Larmor radius is discussed in detail...

Universität und Landesbibliothek Düsseldorf

Decorrelation of flux
Decorrelation of flux
Percolation in magnetic flux structures
Percolation in magnetic flux structures

1. Chirped solitons as attractors for short light pulses

Marcus Neuer, Zhonghao Li and Karl-H. Spatschek, Physical Review E 70, 056605, 2004

 

Abstract: Nonlinear chirped pulse solutions are shown to exist as stable attractors for short light pulses in driven and damped systems. The attractors are determined for systems of different complexity, from simple gain and damping modelings up to the inclusion of higher-order dispersion, Raman processes, and delayed nonlinear responses. The chirped attractors, their stability, as well as the attractor basins can be determined analytically. The analytical predictions are in excellent agreement with numerical simulations.DOI: 10.1103/PhysRevE.70.056605